• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Campbell’s Bridge

Edwiin
Field: Power switch
China

Campbell Bridge: Definition and Function
Definition
The Campbell bridge is a specialized electrical bridge designed to measure unknown mutual inductance. Mutual inductance refers to the physical phenomenon where a change in the current flowing through one coil induces an electromotive force (emf) and, consequently, a current in a neighboring coil. This bridge is not only useful for determining mutual inductance values but can also be employed to measure frequency. It does so by adjusting the mutual inductance until a null point is achieved in the bridge circuit.
In electrical engineering, accurately measuring mutual inductance is crucial for understanding the interaction between different coils in circuits, such as in transformers, inductive coupling systems, and various electrical machinery. The Campbell bridge provides a precise and reliable method for these measurements. When used for frequency measurement, the null - point detection principle allows engineers to establish a relationship between the mutual inductance setting and the frequency of the electrical signal under test.
The following figure illustrates the concept of mutual inductance, which forms the foundation for the operation of the Campbell bridge.

Let:

  • M1 represent the unknown mutual inductance

  • L1denote the self - inductance of the secondary of mutual inductance M1

  • M2signify the variable standard mutual inductance

  • L2 be the self - inductance of the secondary of mutual inductance M2

  • R1, R2, R3, R4 stand for non - inductive resistances

Achieving the balanced position of the Campbell bridge necessitates a two - step procedure:

Step 1: Initial Setup and First Balance Condition

The detector is initially connected between points ‘b’ and ‘d’. In this configuration, the circuit functions analogously to a simple self - inductance comme

  • First Balancing Step To bring the bridge to a balanced condition in the first stage, resistors R3 or R4, along with R1 and R2, are adjusted. This adjustment process fine - tunes the electrical parameters of the circuit, ensuring that the electrical potential differences across the relevant parts of the bridge are equalized, much like adjusting the weights on a balance scale to achieve equilibrium.

  • Second Balancing Step In the next phase, the detector is reconnected between points b' and d'. Building on the adjustments made in the first step, the variable standard mutual inductance M2 is then systematically varied. Through this process of varying M2 while maintaining the previously set resistor adjustments, the overall electrical configuration of the bridge is further optimized. Eventually, a balance point is reached, indicating that the bridge has achieved a state of equilibrium where the electrical signals in the circuit are in harmony, and accurate measurements of the unknown mutual inductance M1 can be made.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.