Scattering Parameters Tutorial: What Are They & What Do They Do?

Electrical4u
03/13/2024

What are S Parameters?

The S-parameters, also known as scattering or S-matrix parameters, represent how RF energy moves through a multi-port network. It represents the linear properties of RF electronic components and describes how energy travels through an electric network.

The S-parameter matrix calculates characteristics like gain, loss, impedance, phase group delay, and VSWR. S-parameters are used to represent a complex network as a simple “black box” and clearly indicate what happens to the signal within that network. The black box could contain anything, ranging from a resistor, a transmission line, or an integrated circuit.

When discussing S-parameters, the term “scattering” describes how the travelling currents and voltages in a transmission line are affected when they come into contact with a discontinuity brought on by the introduction of a network into the transmission line.

S parameters are widely employed in electrical, electronic, and communication systems engineering to effectively describe the electrical characteristics of linear electrical networks, particularly those operating at high frequencies and subject to various steady-state input signals with small amplitudes.

S-parameters can be used at any frequency, but they are primarily used in radio frequency (RF) and microwave networks because signal power and energy considerations are simpler to measure than currents and voltages. S-parameter measurements must include frequency information in addition to characteristic impedance or system impedance because S-parameters are frequency-dependent.

A network or circuit interconnects various electrical components such as resistors, inductors, and capacitors. A pair of terminals at which a signal may enter or leave a network is called a Port or any pair of terminals into which energy is supplied or from which energy is withdrawn.

An electrical network, or “black box,” to be characterised using S parameters may have any number, N, of ports, as shown in Figure 1. Ports are the points at which electrical currents either enter or exit the network. Sometimes these are referred to as pairs of “terminals”.

image.png

Figure 1: Concept of a “black box” and its associated ports

What Do S-Parameters Indicate?

S-parameters are complex numbers (numbers with real and imaginary parts) that can be used either directly or in a matrix to display the amplitude and/or phase of reflection or transmission characteristics in the frequency domain.

When a complex time-varying signal is passed through a linear network, the amplitude and phase shifts can distort the time-domain waveform dramatically. As a result, amplitude and phase information in the frequency domain are critical. S-parameters are a parameter that supports both information and has many advantages for the characterization of high-frequency devices.

When specifying a set of S-parameters, the following information must be defined:

  • The frequency

  • The nominal characteristic impedance (often 50 Ω)

  • The allocation of port numbers

  • Conditions which may affect the network, such as temperature, control voltage, and bias current, where applicable

The Specifics of S-Parameters

According to the S-parameter approach, an electrical network is a “black box” that contains a variety of interconnected basic electrical circuit components, including resistors, capacitors, inductors, and transistors, and that communicates with other circuits via ports.

The S-parameter matrix, which can be used to determine the network’s response to signals applied to the ports, is a square matrix of complex numbers that serves as a characteristic of the network. An electrical network described by S-parameters may have a number of ports.

S parameters offer a versatile means of expressing various electrical attributes of networks or components, including parameters like gain, return loss, voltage standing wave ratio (VSWR), network stability, and reflection coefficient.

Source: Electrical4u.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

Frequency division method for measuring grid-to-ground insulation parameters
Frequency division method for measuring grid-to-ground insulation parameters
The frequency division method enables the measurement of grid-to-ground parameters by injecting a current signal of a different frequency into the open delta side of the potential transformer (PT).This method is applicable to ungrounded systems; however, when measuring the grid-to-ground parameters of a system where the neutral point is grounded via an arc suppression coil, the arc suppression coil must be disconnected from operation beforehand. Its measurement principle is shown in Figure 1.As
Leon
07/25/2025
The insulation parameters of the power grid to ground are measured by the tuning method
The insulation parameters of the power grid to ground are measured by the tuning method
The tuning method is suitable for measuring the ground parameters of systems where the neutral point is grounded via an arc suppression coil, but not applicable to ungrounded neutral point systems. Its measurement principle involves injecting a current signal with continuously varying frequency from the secondary side of the Potential Transformer (PT), measuring the returned voltage signal, and identifying the system's resonant frequency.During the frequency sweeping process, each injected heter
Leon
07/25/2025
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
In an arc - suppression coil grounding system, the rising speed of the zero - sequence voltage is greatly affected by the value of the transition resistance at the grounding point. The larger the transition resistance at the grounding point, the slower the rising speed of the zero - sequence voltage.In an ungrounded system, the transition resistance at the grounding point has basically no impact on the rising speed of the zero - sequence voltage.Simulation Analysis: Arc - suppression Coil Ground
Leon
07/24/2025
Current Division and Voltage Division Rule
Current Division and Voltage Division Rule
Current Division RuleA parallel circuit functions as a current divider, where the incoming current splits among all branches while the voltage across each branch remains constant. The Current Division Rule is used to determine the current through circuit impedances, as illustrated by the circuit below:The currentI splits intoI1 andI2 across two parallel branches with resistancesR1 andR2, whereVdenotes the voltage drop across both resistances. As is known,Then the equation of the current is writt
Edwiin
06/02/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!