• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is the reason for the large and heavy size of microwave transformers?

Encyclopedia
Field: Encyclopedia
0
China

The main reasons for the large size and heavy weight of microwave transformers include the following aspects:

Frequency Characteristics:

Microwave frequencies typically operate in the GHz range, much higher than the power frequency (such as 50Hz or 60Hz) used in traditional transformers. To function effectively at these high frequencies, microwave transformers require special materials and designs to reduce losses and improve efficiency. These specialized designs often lead to larger sizes.

Core Materials:

The core materials used in microwave transformers usually have high permeability and low loss to accommodate high-frequency operation. These materials may be more expensive and heavier than the ferrites or silicon steel sheets used in traditional transformers. For example, microwave transformers often use ferrites or amorphous alloys, which are denser but offer superior performance.

Heat Dissipation Requirements:

Operating at high frequencies generates more heat, so microwave transformers need better cooling designs. This may include larger heat sinks, fans, or other cooling mechanisms, thereby increasing the size and weight of the transformer.

Structural Strength:

At high frequencies, the rapid changes in electromagnetic fields can produce significant mechanical stress. To ensure the structural stability and reliability of the transformer, additional mechanical support and reinforcement measures are required, which also increases the size and weight.

Capacitive Effects:

At high frequencies, parasitic capacitance between windings significantly affects the performance of the transformer. To reduce these parasitic capacitances, the spacing between windings needs to be increased, which also increases the overall size of the transformer.

Shielding and Isolation:

Microwave transformers require good electromagnetic shielding and isolation to prevent electromagnetic interference and leakage. This often involves adding extra shielding layers and isolation materials, further increasing the size and weight of the transformer.

In summary, the large size and heavy weight of microwave transformers are due to the need to operate efficiently at high frequencies while meeting requirements for heat dissipation, structural strength, capacitive effects, and shielding and isolation.

Give a tip and encourage the author!

Recommended

Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
01/29/2026
What’s the Difference Between Rectifier Transformers and Power Transformers?
What is a Rectifier Transformer?"Power conversion" is a general term encompassing rectification, inversion, and frequency conversion, with rectification being the most widely used among them. Rectifier equipment converts input AC power into DC output through rectification and filtering. A rectifier transformer serves as the power supply transformer for such rectifier equipment. In industrial applications, most DC power supplies are obtained by combining a rectifier transformer with rectifier equ
01/29/2026
How to Judge, Detect and Troubleshoot Transformer Core Faults
1. Hazards, Causes, and Types of Multi-Point Grounding Faults in Transformer Cores1.1 Hazards of Multi-Point Grounding Faults in the CoreUnder normal operation, a transformer core must be grounded at only one point. During operation, alternating magnetic fields surround the windings. Due to electromagnetic induction, parasitic capacitances exist between the high-voltage and low-voltage windings, between the low-voltage winding and the core, and between the core and the tank. The energized windin
01/27/2026
A Brief Discussion on the Selection of Grounding Transformers in Boost Stations
A Brief Discussion on the Selection of Grounding Transformers in Boost StationsThe grounding transformer, commonly referred to as "grounding transformer," operates under the condition of being no-load during normal grid operation and overloaded during short-circuit faults. According to the difference in filling medium, common types can be divided into oil-immersed and dry-type; according to phase number, they can be classified into three-phase and single-phase grounding transformers. The groundi
01/27/2026
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.