• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Free Expert Guides on Power Systems, Circuit Design & Electrical Troubleshooting

Access free engineering resources from IEE Business—covering power design, circuit layout, equipment selection, and troubleshooting. Expert-developed guides help engineers, procurement, and project teams make better decisions. Stay ahead on smart grids, renewables, efficiency, and AI tools. Improve reliability, reduce downtime, and enhance outcomes with real-world solutions. Explore our knowledge hub today.
Why Install GCB at Generator Outlets? 6 Core Benefits for Power Plant Operations
1.Protects the GeneratorWhen asymmetric short circuits occur at the generator outlet or the unit bears unbalanced loads, the GCB can quickly isolate the fault to prevent generator damage. During unbalanced load operation, or internal/external asymmetric short circuits, twice the power frequency eddy current is induced on the rotor surface, causing additional heating in the rotor. Meanwhile, the alternating electromagnetic torque at twice the power frequency induces double-frequency vibration in
11/27/2025
Consult
Tip
Consult
Tip
Global Recloser Manufacturers Ranking
Brand Core Business Tavrida Electric Specializes in reclosers and other transmission & distribution equipment, with a strong focus on the R&D and manufacturing of high-voltage switching devices. Its Tavrida OSM recloser stands out in the industry, delivering reliable distribution solutions for power systems. NOJA Power Focuses on intelligent reclosers and related distribution equipment. The company’s advanced NOJA OSM recloser technology targets smart grid applica
11/19/2025
Consult
Tip
Consult
Tip
Analysis of Corrosion Protection Technology in High-Voltage Disconnectors
High-voltage disconnectors are critical protective devices in industrial electrical systems. Typically installed both indoors and outdoors at worksites, these disconnectors are prone to corrosion from multiple factors during long-term operation. This paper analyzes corrosion protection technologies for high-voltage disconnectors based on natural environmental conditions, internal structural design, and protective coating strategies, aiming to support the stable and reliable operation of relevant
11/11/2025
Consult
Tip
Consult
Tip
What are the common faults encountered during the operation of power transformer longitudinal differential protection?
Transformer Longitudinal Differential Protection: Common Issues and SolutionsTransformer longitudinal differential protection is the most complex among all component differential protections. Misoperations occasionally occur during operation. According to 1997 statistics from the North China Power Grid for transformers rated 220 kV and above, there were 18 incorrect operations in total, of which 5 were due to longitudinal differential protection—accounting for approximately one-third. Causes of
11/05/2025
Consult
Tip
Consult
Tip
Relay Protection Types in Substations: A Complete Guide
(1) Generator Protection:Generator protection covers: phase-to-phase short circuits in stator windings, stator ground faults, inter-turn short circuits in stator windings, external short circuits, symmetrical overload, stator overvoltage, single- and double-point grounding in the excitation circuit, and loss of excitation. Tripping actions include shutdown, islanding, limiting fault impact, and alarm signaling.(2) Transformer Protection:Power transformer protection includes: phase-to-phase short
11/05/2025
Consult
Tip
Consult
Tip
What Are the Factors Influencing the Impact of Lightning on 10kV Distribution Lines?
1. Induced Lightning OvervoltageInduced lightning overvoltage refers to the transient overvoltage generated on overhead distribution lines due to nearby lightning discharges, even when the line is not directly struck. When a lightning flash occurs in the vicinity, it induces a large amount of charge on the conductors—opposite in polarity to the charge in the thundercloud.Statistical data shows that lightning-related faults caused by induced overvoltages account for approximately 90% of total fau
11/03/2025
Consult
Tip
Consult
Tip
What Are the Handling Procedures After Transformer Gas (Buchholz) Protection Activation?
What Are the Handling Procedures After Transformer Gas (Buchholz) Protection Activation?When the transformer gas (Buchholz) protection device operates, a thorough inspection, careful analysis, and accurate judgment must be carried out immediately, followed by appropriate corrective actions.1. When the Gas Protection Alarm Signal is ActivatedUpon activation of the gas protection alarm, the transformer should be inspected immediately to determine the cause of operation. Check whether it was caused
11/01/2025
Consult
Tip
Consult
Tip
PT Fuse Slow Blow: Causes, Detection & Prevention
I. Fuse Structure and Root Cause AnalysisSlow Fuse Blowing:From the design principle of fuses, when a large fault current passes through the fuse element, due to the metal effect (certain refractory metals become fusible under specific alloy conditions), the fuse first melts at the soldered tin ball. The arc then rapidly vaporizes the entire fuse element. The resulting arc is quickly extinguished by quartz sand.However, due to harsh operating environments, the fuse element may age under the comb
10/24/2025
Consult
Tip
Consult
Tip
Why Fuses Blow: Overload, Short Circuit & Surge Causes
Common Causes of Fuse BlowingCommon reasons for fuse blowing include voltage fluctuations, short circuits, lightning strikes during storms, and current overloads. These conditions can easily cause the fuse element to melt.A fuse is an electrical device that interrupts the circuit by melting its fusible element due to heat generated when current exceeds a specified value. It operates on the principle that, after an overcurrent persists for a certain period, the heat produced by the current melts
10/24/2025
Consult
Tip
Consult
Tip
On-Line Testing for Surge Arresters Below 110kV: Safe and Efficient
An On-Line Testing Method for Surge Arresters at 110kV and BelowIn power systems, surge arresters are critical components that protect equipment from lightning overvoltage. For installations at 110kV and below—such as 35kV or 10kV substations—an on-line testing method effectively avoids the economic losses associated with power outages. The core of this method lies in using online monitoring technology to evaluate arrester performance without interrupting system operation.The test principle is b
10/23/2025
Consult
Tip
Consult
Tip
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.